

Biogas and RNG Market Trends

Scott Martin, P.E. September 27, 2024

AGENDA

- Biogas Use Basics
- Renewable Thermal Certificates
- Biogas Use Considerations in Missouri
- RNG Market Drivers
- Project Development Considerations
- Q&A/Discussion

Biogas Market Overview

► 2,300 Current Sites Producing Biogas with Capture Systems

350 Manure / Ag
1,250 WWTP
650 Landfill
50 Food Waste

https://americanbiogascouncil.org/biogas-market-snapshot/

End Uses – Direct Use

- Offset fuel costs
- Demand varies seasonally
- Limited incentives

End Uses – Electricity / CHP

- Offset electricity
- Offset heat & air conditioning
- Limited incentives

- Exports biogas to natural gas grid
- Existing state and federal incentives

End Uses – Sulfur Removal

BURNS MSDONNELL.

TEXAS ASSOCIATION OF CLEAN WATER

COMMITMENT TO TEXAS

- Regenerative High Flow or High H₂S
- Fixed Media Low Flow or Low H₂S

End Uses – Sulfur Removal

	ppmV H2S										
		100	250	500	750	1,000	1,500	2,000	3,000	4,000	7,500
	25	0.3	0.8	1.6	2.4	3.2	4.8	6.4	9.6	12.8	23.9
	50	0.6	1.6	3.2	4.8	6.4	9.6	12.8	19.1	25.5	47.8
	100	1.3	3.2	6.4	9.6	12.8	19.1	25.5	38.3	51.0	95.6
	200	2.6	6.4	12.8	19.1	25.5	38.3	51.0	76.5	102.0	191.3
SCFM	300	3.8	9.6	19.1	28.7	38.3	57.4	76.5	114.8	153.0	286.9
	400	5.1	12.8	25.5	38.3	51.0	76.5	102.0	153.0	204.0	382.5
	500	6.4	15.9	31.9	47.8	63.8	95.6	127.5	191.3	255.0	478.2
	750	9.6	23.9	47.8	71.7	95.6	143.4	191.3	286.9	382.5	717.2
•••	1,000	12.8	31.9	63.8	95.6	127.5	191.3	255.0	382.5	510.0	956.3
	1,500	19.1	47.8	95.6	143.4	191.3	286.9	382.5	573.8	765.1	1,434.5
	2,000	25.5	63.8	127.5	191.3	255.0	382.5	510.0	765.1	1,020.1	1,912.6
	3,000	38.3	95.6	191.3	286.9	382.5	573.8	765.1	1,147.6	1,530.1	2,869.0
	4,000	51.0	127.5	255.0	382.5	510.0	765.1	1,020.1	1,530.1	2,040.2	3,825.3
	5,000	63.8	159.4	318.8	478.2	637.5	956.3	1,275.1	1,912.6	2,550.2	4,781.6
	7,500	95.6	239.1	478.2	717.2	956.3	1,434.5	1,912.6	2,869.0	3,825.3	7,172.4

Non-regenerable dry media

Chemical treatment

Biological Scrubber

End Uses – VOC / Siloxane Removal

- Regenerative High Flow or High VOCs
- Fixed Media Low Flow or Low VOCs

BURNS MEDONNELL.

•

۲

BURNS MEDONNELL

M-RETS Renewable Thermal

RTC - Marketplace - OnSite Onsite Thermal Process

RTC – Marketplace – CHP Combined Heat and Power Thermal Process

TEXAS ASSOCIATION OF CLEAN WATER AGENCIES

Verification objective	Method	Frequency
 The carbon intensity (CI) of the RNG source is equal to or less than what is claimed initially. If more than one, each CI must be done. Generators that utilize an IRE but do not track a CI are exempt from this requirement. 	 Review all inputs and outputs that could affect CI Recalculate CI based on annual data Confirm annual CI is within an acceptable range Prepare report and upload to the M-RETS System via the Generator Documents 	Annual
2. Reported gas volumes injected into the common carrier pipeline are accurate	 Review EDI/meter data Submit gas volumes injected into the M-RETS System Review meter calibration Compare with proof of biogas production Verify biogas production from inputs/outputs Confirm upgrading unit efficiency Prepare a report of the above and upload it to M-RETS via the generation submission process. 	Monthly (via attestation, and becomes attached to certificate and visible to future owners in the chain of custody)
3. The RNG production site is physically connected to a common carrier pipeline	Visual inspection	Annual
 The Environmental Attributes are intact, and the same gas claimed in M-RETS is not sold elsewhere. 	Affidavit from biogas producer and RNG producer and upload Affidavits into M-RETS via the Generator Documents Portal.	Quarterly (provided one time at the Annual Review on or after January 1)

RTC - Mechanics

- M-RETS facilitates a unique, traceable digital certificate (i.e., one RTC) for every dekatherm ("dth") of verified renewable thermal energy recorded on the platform.
- 3rd Party verification is required.
- M-RETS provides for—but does not require—the ability to track carbon pathways and carbon intensity (CI) values with comprehensive documentation as part of each certificate.
- Once issued, M-RETS users can choose to transfer (buy/sell), retire (to fulfill commitments), import, or export RTCs.
- M-RETS registers projects in across North America, including all Canadian provinces.

RNG MARKET OVERVIEW

Active RNG Projects

BURNS

Active RNG Projects

RNG Volume by Feedstock

BURNS XM⊆DONNELL.

RNG Prospects

800+ operating prospects for RNG

- 355 operational agriculture biogas facilities that can be fitted with RNG projects
- 474 candidate landfills for landfill gas/RNG projects
- 10,000+ Potential for new projects:
 - 8,000+ Livestock Biogas Facilities
 - 2,500+ Water/Wastewater Biogas Facilities

WHY RNG?

Biogas can be cleaned, conditioned, and injected into natural gas pipelines to be used as a

feedstock for the decarbonization of:

- Transportation
- Fuel Refining
- Pipeline Infrastructure
- Power Generation
- Manufacturing

BURNS MEDONNELL

To meet Net-Zero Goals, RNG may need to account for 51% of natural gas supply by 2050.

TEXAS ASSOCIATION OF CLEAN WATER AGENCIES

Market Drivers-RNG Demand

- Voluntary Demand
 - **Renewable Thermal Certificates** •
- Regulatory Incentives
 - Renewable Fuels Standard (New Volume ٠ **Obligations**)
 - State/Canada Low-Carbon Fuel Standards
 - Utility cost recovery

Funding Incentives

- State grants/funding programs for RNG development and interconnection
- Inflation Reduction Act •

BURNS MEDONNELL

Voluntary Demand to Exceed Production 5X by 2030

e: HIS; EIA; RNG coalition; EIA Residential Energy Survey; EIA Natural Gas Annual Respondent Query System; Oxford Economics; market participant interviews; utility RNG adoption announcements; RNG coalition; IOP science; American Gas Association; Argonne Labs; EPA, CER; BCG analysis

- Boston Consulting Group - "Is Renewable Natural Gas Poised for Future Growth or Doomed to Decline?"

Voluntary RNG Markets - Utilities

Natural Gas Utilities

BURNS MEDONNELL

- Cost Recovery States
- Voluntary Programs
- Mandatory Programs

Renewable natural gas policies and programs

TEXAS ASSOCIATION OF CLEAN WATER AGENCIES

RNG Market Drivers - Utilities

- o Voluntary Market Attributes -
 - RFP of RNG Attributes NW Natural, Hawaii Gas, Pudget Sound, Avista, etc.
- Voluntary Purchase Program Customers purchasing "blocks"
 - RNG Only
 - Mixture of RNG and Other Carbon Offset Programs
- Rate Increases to Build RNG Production Facilities
 - Increase rates and monetize RNG projects through capital investment and retire the environmental attributes (EA) of the behalf of the utilites' customers (the rate payers)
- Rate Decrease to Build RNG Production Facilities
 - Sell the EA on credit markets (LCFS, RFS, etc.) and realize the revenue to decrease rates for customers.
 - EAs are retired by others. Not the utility.
- Non-Regulated Utility Developers
 - Black Hills, NW Natural, Peak Renewables, etc.

Market Drivers

- Utility Voluntary Purchase Program – Customers purchasing "blocks"
 - RNG Only
 - Mixture of RNG and Other Carbon Offset Programs (Example: Nicor Gas "Total Green")

TotalGreen™ Basic: \$0.0734 per therm

BURNS MgDONNELL

TotalGreen[™] Basic offsets 0.6% of the carbon dioxide emissions through (RNG) environmental attributes and the remaining 99.4% of emissions through carbon offsets. **TotalGreen[™] Premium: \$0.2646 per therm** TotalGreen[™] Premium offsets 10.3% of the carbon dioxide emissions through RNG environmental attributes and the remaining 89.7% of emissions through carbon offsets.

State	Utility	Established Voluntary Program 🖵	Blended or RNG Only	Value of the Therms	\$/MMBTU
California	Southern California Gas Co (SoCalGas) & San Diego Electric Co.	Y	RNG	\$1.51/therm for RNG	\$ 15.10
Colorado	Black Hills Corporation	Y	Blended	\$5/20.5 therms	\$ 2.44
Idaho	Avista	Y	RNG	\$5/1.5 therms	\$ 33.33
Kansas	Black Hills Energy	Y	Blended	See Above	
Maine	Summit Natural Gas	Y	Blended	\$7.44/10% RNG percent of use 18.60/25% \$37.2/50% \$74.40/100%	\$ 2.34
Michigan	DTE Energy	Y	Blended	\$4/ 1.375 MT CO2 achieved through both carbon offsets and RNG	
Minnesota	CenterPoint Energy	Y	RNG	\$3.89/ therm of RNG	\$ 38.90
Nebraska	Black Hills Energy	Y	Blended	See Above	
New Hampshire	Liberty Utilities	Y	RNG		\$ 25.00
North Carolina	Piedmont Natural Gas (Duke Energy)	Y	Blended	\$3/mo per block of 12.5 therms	\$ 2.40
North Carolina	Public Service Company of North Carolina (Dominion)	Y	Blended	\$3/mo per block of 12.5 therms	\$ 2.40
Oregon	Northwest Natural	Y	RNG	Non Voluntary, Rates increased to offset the cost.	
Utah	Dominion Energy Questar Gas	Y	RNG	\$5/5 therms	\$10 for Attributes + \$ for Natural Gas Supply
Vermont	Vermont Gas Systems Inc	Y	RNG	Blended - \$1/100CF/Therm Local - \$1.33/100CF/Therm	\$10 to \$13 for attributes + \$ for Natural Gas Supply
Virginia	Colombia Gas of Virginia	Y	Blended	\$3/Dekatherm	\$ 3.00
Washington	Puget Sound Energy	Y	RNG	\$3.75/2.7 therms	\$13.89 for Attributes + \$ for Natural Gas Supply

RFS Set – Proposed (December '22) vs Final (July '23)

			Increase		Increase
	2023	2024	'23-'24	2025	'24-'25
Final CNG/LNG Derived from Biogas	831	1,039	25%	1,299	25%
Proposed CNG/LNG from Biogas	719.3	813.9	13.2%	920.9	13.1%
Difference Final vs. Proposal	111.7	225.1		378.1	
Difference Final vs. Proposal, Percent	15.5%	27.7%		41.1%	

- EPA used a 25% increase in the Final Rule, versus a roughly 13% increase in the Proposal.
- First time EPA has provided RVO projections for more than just 1 year

Source: https://www.rngcoalition.com/in

RNG Incentives – Transportation Fuel

- RFS "Set Rule" Proposed December '22
 - Finalized July '23

BURNS MEDONNELL

- Proposes eRIN's for the first time.
- Biointermediate to include:
 - biogas used to make a renewable fuel other than RNG or electricity"
- D3 RIN price forecasts are bullish:
 - Continued growth in RNG production
- Biofuel industry is optimistic that EPA RVO targets would be adjusted higher
 - The intent of both RFS2 and "Set Rule" to grow the cellulosic category

Renewable Volume Obligations (billion RINS)	2023	2024	2025
Cellulosic biofuel (D3)	0.84	1.09	1.38
Advanced biofuel (D5)	5.94	6.54	7.33

Source: EPA

Source: https://www.naseo.org/Data/Sites/1/rfs-and-rin-basics.pdf

MARKET DRIVERS – ACQUISITIONS

Biogas infrastructure transactions

Transaction

Deal announced	Buyer		Buyer's core business	Company acquired		value (\$M)
10/31/22	Chesapeake Utilities Corp.	•	Gas and electric utility	Planet Found Energy Development LLC	•	9.4
10/31/22	Macquarie Asset Management Inc.	•	Investment fund	BayWa r.e. bioenergy GmbH	•	Undisclosed
10/17/22	BP PLC	•	Integrated oil and gas company	Archaea Energy Inc.	•	4,100.0
09/20/22	HIG Capital LLC	•	Investment firm	Northern Biogas LLC	٠	Undisclosed
07/20/22	BlackRock Real Assets	•	Investment fund	Vanguard Renewables	۲	700.0
12/02/21	ArcLight Clean Transition Corp. II	•	Special purpose acquisition company	OPAL Fuels	۲	1,750.0
07/16/21	Kinder Morgan	•	Oil and gas pipeline operator	Kinetrex Energy	•	310.0
05/11/21	Montauk Renewables Inc.	•	Biogas provider	NR3 LLC	۲	16.3
04/26/21	St1 Nordic	•	Petroleum refiner and retail distributor	E.ON Biofor	•	Undisclosed
04/15/21	Engie SA	•	Gas and electric utility	Deal Farm Biogas	•	Undisclosed
04/07/21	Rice Acquisition	•	Special purpose acquisition company	Aria Energy	٠	680.0
04/07/21	Rice Acquisition	•	Special purpose acquisition company	Archaea Energy	•	347.0
01/11/21	Total SA	•	Integrated oil and gas company	Fonroche Biogaz	•	Undisclosed
	•	Pr	ivate 🛛 😑 Public 🔍 Subsidiary of public	company		

As of Nov. 28, 2022.

BURNS MEDONNELL

Sources: Raymond James & Associates; S&P Global Market Intelligence.

Enbridge to purchase U.S. renewable gas facilities for US \$1.2 billion (11/3/23)

Market Drivers- RNG Supply

- 1% of Natural Gas
- By 2030 RNG Supply 7x 2020 Levels (EIA)
- By 2050 RNG Supply 27x
 2020 Levels (EIA)
- Supply Levels only at 2/3 of expected demand.

Renewable natural gas (RNG) production pathways

	Fossil natural gas	Landfill	Agricultural manure ¹	Food waste	Wastewater
Current US supply potential, million MMBTU ² /year	603,600	890	1,200	70	95
Actual US supply, 2022, million MMBTU ² /year	~37,500	~70	~20	~5	~5
Penetration, ³ %	N/A	~8	~2	~7	~6
Carbon intensity range, gCO ₂ e/MJ ⁴	80-90	50-60			30-40
			<-150	-30 to -80	
Supply cost range, \$/MMBTU ²	3-5	10–15	25–30	20-25	15–20

Includes chicken and swine. Million British thermal units. *Calculated as supply divided by potential. "Grams of carbon dioxide equivalent per megajoule of energy. Source: CARB; EIA; McKinsey analysis

Other Market Drivers for RNG

- H2 Production
- Biogenic CO2 as a Byproduct
- RNG to Other Countries
- SAF
- Sustainable Fertilizers/Nutrient Management

Exhibit 2

Renewable natural gas can potentially unlock incentives for low-carbon hydrogen production.

Cost of blue hydrogen with ATR¹ with CCS² including 45V (illustrative),³ \$/kg

Operating expenses Capital expenses 45V PTC Total cost including subsidies Carbon intensity, kg CO₂e per kg H₂
Without renewable natural gas (RNG),

Without renewable natural gas (RNG), blue hydrogen with 95% CCS can earn \$0.75–\$1.0/kg production tax credit (PTC)...

... however, a 7–10% RNG blend can unlock \$3/kg PTC, implying each MMBTU⁴ of RNG generates significant value

~2.7–3.0

ATR + 95% CCS	\$0.75-\$1.0	ATR + 95%
	PTC	CCS and
		\$0.70-\$1.01 TC

-3.0 ~0 to -0.3 ATR + 95% CCS \$3.0 ATR + 95% with RNG blend PTC CCS and \$3.0 PTC ~0-0.45

'Autothermal reforming, a process to produce hydrogen from natural gas. "Carbon capture and storage, ~80 kilotons per annum H₂ facility. 'Million British thermal units. Masumes \$40/MMBTU RNG driving incremental operating expenses. Source: Hydrogen Insights Cost Models: McKinsey team analysis

¹⁹ Pathways to commercial liftoff: Clean hydrogen, U.S. Department of Energy, March 2023.

PROJECT DEVELOPMENT CONSIDERATIONS

Generic RNG Business Model

BURNS XM⊆DONNELL

AD projects include procurement of a feedstock, processing of the feedstock, produce commercial products for sale, and disposal of waste by-products

Partnering with 3rd Party Project Developers

How?

- Evaluation of Preliminary Concept of RNG Project
- Proposed facility location and land ownership (layout plan)
- Expected biogas quality / production rates
 - Understand required treatment steps
 - Peak anticipated hourly/daily flow rates
 - Expected daily/seasonal variations Ability to accept supply
- Anticipated gas quality and pressure at the interconnect point
 - Gas Specification can impact RNG Project Economics
 - Information about proposed technology (including commercial track record)
- Preliminary Cost Evaluation / Financial Analysis

Project Stage Gates

Assess

- Identify opportunities
- Evaluate commercial markets, competitors and risks
- Assess appropriate technology
- Develop financial model
- Establish project milestones
- Engage community
- Assess permitting and feedstock
- Preliminary mass balance
- Financial model
- Feedstock report
- Project-specific development budget
- Preliminary Capex budget
- Land identified
- Energy off-take identified
- Permitting summary memo

Time

Secure

- Develop mass/energy balance
- Pursue fertilizer and feedstock LOIs
- Conduct preliminary engineering for permitting and site plan
- Submit utility connection request
- Evaluate construction partners
- Solicit preliminary debt terms
- Land under control (lease/purchase)
- Preliminary process engineering complete (25% of total)
- 50% of feedstock under LOI
- 50% of fertilizer/compost under LOI
- Pipeline connection approved / PPA term sheet received
- Permit approvals indicated

•0.5-2 years

- 60% of CapEx guoted
- Construction approach determined

Prepare

- Finalize permits
- Finalize facility feedstock recipe
- Advance commercial commitments as appropriate to contracts
- Select construction approach
- Detailed facility design
- Obtain debt financing term sheet
- All permits/approval in hand
- 75% of engineering complete
- 75% of feedstock under I OI
- 75% of fertilizer/compost under LOI
- Capex tendered / construction contracts prepared
- Major Commercial contracts signed
- Debt term sheet executed
- Construction schedule finalized
- O&M plan/contracts

•0.5-2 years

Finalize

- Final 100% design/IFC drawings
- Construction activities
- O&M hiring/staffing
- Vendor & O&M training
- Site-Specific O&M documentation
- Start-Up and commissioning
- Performance testing/guarantees
- Punchlist
- Drawings/Design for construction
- Construction completed
- O&M team hired/trained
- O&M docs checklist, safety, QA/QC, O&M manuals, etc.
- Facility started-up, commissioned
- Facility steady-state product grid
- Facility meets perf. requirements
- Final punch list completed
- Demobilization, hand over facility

•1-2 years

BURNS MEDONNELL

Deliverables

Activities

•0.5-2 years

WWTP and RNG EPC Spire / KCMO P3

Progressive Open Book EPC - DBFOM

- Current THP Project
- Long History Working at WWTP
- 1,300 Scfm
- Supported Regulated Utility as Design-Build Partner
- RNG Process Evaluation / Design
- Permitting
- Construction / Commissioning

Biosolids and Organics RNG Design-Build Unified Government of Wyandotte County and Kansas City, Kansas

Progressive Design Build

- High Strength Organic Waste (HSOW) Market Survey
- **HSOW Receiving and Processing Facilities**
- 50 DTPD Capacity
- **RNG Process Evaluation /** Design
- Permitting
- Construction / Commissioning
- **IRA Benefit**

Questions?

Scott Martin, P.E. samartin@burnsmcd.com 816-588-3278

